LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering

نویسندگان

  • Alicia T. Specht
  • Jun Li
چکیده

Summary To construct gene co-expression networks based on single-cell RNA-Sequencing data, we present an algorithm called LEAP, which utilizes the estimated pseudotime of the cells to find gene co-expression that involves time delay. Availability and Implementation R package LEAP available on CRAN. Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

Laplacian eigenmaps and principal curves for high resolution pseudotemporal ordering of single-cell RNA-seq profiles

Advances in RNA-seq technologies provide unprecedented insight into the variability and heterogeneity of gene expression at the single-cell level. However, such data offers only a snapshot of the transcriptome, whereas it is often the progression of cells through dynamic biological processes that is of interest. As a result, one outstanding challenge is to infer such progressions by ordering ge...

متن کامل

Bayesian Gaussian Process Latent Variable Models for pseudotime inference in single-cell RNA-seq data

Single-cell genomics has revolutionised modern biology while requiring the development of advanced computational and statistical methods. Advances have been made in uncovering gene expression heterogeneity, discovering new cell types and novel identification of genes and transcription factors involved in cellular processes. One such approach to the analysis is to construct pseudotime orderings ...

متن کامل

A Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data

Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...

متن کامل

A Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data

Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 33 5  شماره 

صفحات  -

تاریخ انتشار 2017